8 research outputs found

    A global database for metacommunity ecology, integrating species, traits, environment and space

    Get PDF
    The use of functional information in the form of species traits plays an important role in explaining biodiversity patterns and responses to environmental changes. Although relationships between species composition, their traits, and the environment have been extensively studied on a case-by-case basis, results are variable, and it remains unclear how generalizable these relationships are across ecosystems, taxa and spatial scales. To address this gap, we collated 80 datasets from trait-based studies into a global database for metaCommunity Ecology: Species, Traits, Environment and Space; “CESTES”. Each dataset includes four matrices: species community abundances or presences/absences across multiple sites, species trait information, environmental variables and spatial coordinates of the sampling sites. The CESTES database is a live database: it will be maintained and expanded in the future as new datasets become available. By its harmonized structure, and the diversity of ecosystem types, taxonomic groups, and spatial scales it covers, the CESTES database provides an important opportunity for synthetic trait-based research in community ecology

    More warm-adapted species in soil seed banks than in herb layer plant communities across Europe

    Get PDF
    Responses to climate change have often been found to lag behind the rate of warming that has occurred. In addition to dispersal limitation potentially restricting spread at leading range margins, the persistence of species in new and unsuitable conditions is thought to be responsible for apparent time-lags. Soil seed banks can allow plant communities to temporarily buffer unsuitable environmental conditions, but their potential to slow responses to long-term climate change is largely unknown. As local forest cover can also buffer the effects of a warming climate, it is important to understand how seed banks might interact with land cover to mediate community responses to climate change. We first related species-level seed bank persistence and distribution-derived climatic niches for 840 plant species. We then used a database of plant community data from grasslands, forests and intermediate successional habitats from across Europe to investigate relationships between seed banks and their corresponding herb layers in 2763 plots in the context of climate and land cover. We found that species from warmer climates and with broader distributions are more likely to have a higher seed bank persistence, resulting in seed banks that are composed of species with warmer and broader climatic distributions than their corresponding herb layers. This was consistent across our climatic extent, with larger differences (seed banks from even warmer climates relative to vegetation) found in grasslands. Synthesis. Seed banks have been shown to buffer plant communities through periods of environmental variability, and in a period of climate change might be expected to contain species reflecting past, cooler conditions. Here, we show that persistent seed banks often contain species with relatively warm climatic niches and those with wide climatic ranges. Although these patterns may not be primarily driven by species climatic adaptations, the prominence of such species in seed banks might still facilitate climate-driven community shifts. Additionally, seed banks may be related to ongoing trends regarding the spread of widespread generalist species into natural habitats, while cool-associated species may be at risk from both short- and long-term climatic variability and change.Funding Agencies|H2020 European Research Council [757833]; Svenska Forskningsradet Formas [2015-1065, 2018-00961]; Vetenskapsradet [2020-04276]</p

    Data from: Trophic interactions and abiotic factors drive functional and phylogenetic structure of vertebrate herbivore communities across the Arctic tundra biome

    Get PDF
    Communities are assembled from species that evolve or colonise a given geographic region, and persist in the face of abiotic conditions and interactions with other species. The evolutionary and colonisation histories of communities are characterised by phylogenetic diversity, while functional diversity is indicative of abiotic and biotic conditions. The relationship between functional and phylogenetic diversity infers whether species functional traits are divergent (differing between related species) or convergent (similar among distantly related species). Biotic interactions and abiotic conditions are known to influence macroecological patterns in species richness, but how functional and phylogenetic diversity of guilds vary with biotic factors, and the relative importance of biotic drivers in relation to geographic and abiotic drivers is unknown. In this study, we test whether geographic, abiotic or biotic factors drive biome-scale spatial patterns of functional and phylogenetic diversity and functional convergence in vertebrate herbivores across the Arctic tundra biome. We found that functional and phylogenetic diversity both peaked in the Western North American Arctic, and that spatial patterns in both were best predicted by trophic interactions, namely vegetation productivity and predator diversity, as well as climatic severity. Our results show that both bottom-up and top-down trophic interactions, as well as winter temperatures, drive functional and phylogenetic structure of Arctic vertebrate herbivore assemblages.. This has implications for changing Arctic ecosystems; under future warming and northward movement of predators potential increases in phylogenetic and functional diversity in vertebrate herbivores may occur. Our study thus demonstrates that trophic interactions can determine large-scale functional and phylogenetic diversity just as strongly as abiotic conditions

    CESTES - A global database for metaCommunity Ecology: Species, Traits, Environment and Space

    No full text
    CESTES is a global database for metaCommunity Ecology: Species, Traits, Environment and Space. It compiles 80 datasets from trait-based studies. Each dataset includes four matrices: species community abundances or presences/absences across multiple sites, species trait information, environmental variables and spatial coordinates of the sampling sites. CESTES presents a harmonized structure and covers a diversity of ecosystem types (marine, terrestrial, freshwater), taxonomic groups (plants, vertebrates, invertebrates...), geographical regions, and spatial scales. The CESTES database is a live database: it will be maintained and expanded in the future as new datasets become available (https://icestes.github.io/sharedata). A zipped folder called “CESTES.zip” includes two alternative formats for the CESTES database: - a “xCESTES” folder that includes 80 Excel files (one file per dataset), each named according to the following structure: “AuthorPublicationYear.xlsx” - a “rCESTES” folder that includes the CESTES core processed database (comm, traits, envir, coord matrices) as an R list object “CESTES.RData” plus two R scripts, and two metadata tables for data processing and exploration. This “CESTES.zip” folder also includes: - an extended metadata table, “CESTES_metadata.xlsx”, that provides the general metadata information of all the datasets, - a tutorial document, “HOW_TO_SHARE_MY_DATA_FOR_CESTES.pdf”, that explains how to share data for integrating future datasets in the database. A second zipped folder, called "ceste.zip", corresponds to the non-spatial ancillary to CESTES. We provide access to 10 additional datasets that were not completely suitable for the CESTES database, due to the absence of spatial information or insufficient metadata but that were potentially valuable for their three other data matrices (comm, traits, envir). They follow the same structure as CESTES, except that they do not present the “coord” sheet and sometimes include only partial metadata. The “ceste.zip” zipped folder includes the 10 data files + 1 metadata file called "ceste_metadata.xlsx"

    A global database for metacommunity ecology, integrating species, traits, environment and space

    No full text
    The use of functional information in the form of species traits plays an important role in explaining biodiversity patterns and responses to environmental changes. Although relationships between species composition, their traits, and the environment have been extensively studied on a case-by-case basis, results are variable, and it remains unclear how generalizable these relationships are across ecosystems, taxa and spatial scales. To address this gap, we collated 80 datasets from trait-based studies into a global database for metaCommunity Ecology: Species, Traits, Environment and Space; "CESTES". Each dataset includes four matrices: species community abundances or presences/absences across multiple sites, species trait information, environmental variables and spatial coordinates of the sampling sites. The CESTES database is a live database: it will be maintained and expanded in the future as new datasets become available. By its harmonized structure, and the diversity of ecosystem types, taxonomic groups, and spatial scales it covers, the CESTES database provides an important opportunity for synthetic trait-based research in community ecology
    corecore